Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Efficient hydrogen isotope separation by tunneling effect using graphene-based heterogeneous electrocatalysts in electrochemical hydrogen isotope pumping

Yasuda, Satoshi; Matsushima, Hisayoshi*; Harada, Kenji*; Tanii, Risako*; Terasawa, Tomoo; Yano, Masahiro; Asaoka, Hidehito; Gueriba, J. S.*; Di$~n$o, W. A.*; Fukutani, Katsuyuki

ACS Nano, 16(9), p.14362 - 14369, 2022/09

 Times Cited Count:12 Percentile:84.04(Chemistry, Multidisciplinary)

The fabrication of hydrogen isotope enrichment system is essential for the development of industrial, medical, life science, and nuclear fusion fields, therefore alternative enrichment techniques with high separation factor and economic feasibility have been still explored. Herein, we report the fabrication of heterogeneous electrode with layered structures consisting of palladium and graphene layers for polymer electrolyte membrane electrochemical hydrogen pumping for the hydrogen isotope enrichment. We demonstrated significant bias voltage dependence of hydrogen/deuterium (H/D) separation ability and its high H/D at lower bias voltage. Theoretical analysis also demonstrated that the observed high H/D at low bias voltage stems from hydrogen isotopes tunneling through atomically-thick graphene during the electrochemical reaction, and the bias dependent H/D results in a transition from the quantum tunneling regime to classical over- barrier regime for hydrogen isotopes transfer via the graphene. These findings provide new insight for a novel economical methodology of efficient hydrogen isotope enrichment.

Journal Articles

Synergistic hybrid electrocatalysts of platinum alloy and single-atom platinum for an efficient and durable oxygen reduction reaction

Liu, B.*; Feng, R.*; Busch, M.*; Wang, S.*; Wu, H.*; Liu, P.*; Gu, J.*; Bahadoran, A.*; Matsumura, Daiju; Tsuji, Takuya; et al.

ACS Nano, 16(9), p.14121 - 14133, 2022/09

 Times Cited Count:51 Percentile:98.66(Chemistry, Multidisciplinary)

Journal Articles

Biodegradability of disulfide-organosilica nanoparticles evaluated by soft X-ray photoelectron spectroscopy; Cancer therapy implications

Mekaru, Harutaka*; Yoshigoe, Akitaka; Nakamura, Michihiro*; Doura, Tomohiro*; Tamanoi, Fuyuhiko*

ACS Applied Nano Materials (Internet), 2(1), p.479 - 488, 2019/01

 Times Cited Count:40 Percentile:83.26(Nanoscience & Nanotechnology)

Organosilica nanoparticles are attractive for use as drug delivery systems for cancer therapy. Ideally, the nanoparticles need to degrade in the body after drug delivery to minimize their risk. However, the biodegradation of organosilica nanoparticles has not been thoroughly investigated. In this study, we used X-ray photoelectron spectroscopy and field-emission scanning electron microscopy to investigate the degradation of organosilica nanoparticles by glutathione, a peptide found in cells. Our results indirectly indicate that glutathione is able to reduce the disulfide bonds present in the network of one type of the nanoparticles, promoting dissociation of these nanoparticles. The dissociated nanoparticles form large maple leaf-shaped structures under certain conditions. We consider the formation mechanism of these symmetrical structures.

Journal Articles

Room temperature quantum emission from cubic silicon carbide nanoparticles

Castelletto, S.*; Johnson, B. C.*; Zachreson, C.*; Beke, D.*; Balogh, I.*; Oshima, Takeshi; Aharonovich, I.*; Gali, A.*

ACS Nano, 8(8), p.7938 - 7947, 2014/08

 Times Cited Count:86 Percentile:90.39(Chemistry, Multidisciplinary)

4 (Records 1-4 displayed on this page)
  • 1